GCE BIOLOGY - BY5

 MARK SCHEME - SUMMER 2014

 MARK SCHEME - SUMMER 2014}
Question Marking details
(a) $\quad \mathrm{A}$ - Corona radiata / follicle (cells)/ cumulus cells/ granulosa cells;
B- Zona pellucida;
(b) (i) Acrosome; 1
(ii) \{Releases/ contains\} \{enzymes/proteases/carbohydrase\}; 2 To \{digest/ break down/ penetrate/ soften\} \{corona radiata/ zona pellucida\};
(c) (i) \{Splitting/dividing\} of \{zygote/early embryo\} cells to form new cells;
(ii) Hollow ball of cells/ ball of \{undifferentiated/ partly 1 differentiated\} cells;
(iii) The \{burying/ embedding/ implanting\} of the \{blastocyst/ 1 embryo\} into the $\{$ uterine lining/endometrium\};
2 (a) (i) DNA molecule unwinds; 3
Unzips/ breaks hydrogen bonds/ strands separate;
(free) \{nucleotides \} \{join/align\} with \{complementary bases/ A to T / C to G ;
(ii) \{To join the nucleotides together/ catalyses the addition of nucleotides\} to form a \{new strand/ backbone/ phosphodiester bonds;;
(b) Each new DNA molecule has one \{original/ template\} strand;
2
And one new strand which has been \{made/ synthesised/ replicated\};
(b) (i) \quad Correct diagram; $\quad 1$
(ii) Correct labelling of 2
chromatid, centromere, centriole, spindle fibres
2 marks for 4 correct labels
1 mark for 2 or 3 correct labels
$\begin{array}{ll}\text { (iii) Correct diagrams; } & 1 \\ & \text { Two chromosomes in each cell (one large and one small) } \\ & \text { Centromeres on dotted line }\end{array}$
(iv) \{Random/ independent\} assortment of \{chromosomes/

3
chromatids\}/ description of \{random/ independent assortment\};
crossing over/ chiasmata;
produces haploid cells;

4

(a)	(i)	NnGg for both; NG Ng nG ng for both; correct completion of punnet square; correct ratio 9:3:3:1; correct phenotypes matched to ratio;	5
	(ii)	Correct expected number column 72 : 24 : 24 : 8;	1
(b)	(i)	0.667/0.67/ $/ 2 / 3 ;$	1
	(ii)	7.82 circled;	1
	(iii)	Accept because x^{2} value is to left of \{critical value/ 7.82\}/ Accept because x^{2} value has probability higher than $\{0.05 / 5 \%\} /$ Accept because x^{2} value falls between $\{0.9 / 90 \%\}$ and $\{0.8 /$ 80% \} probability/ Accept because the probability lies between $80-90 \%$ that it is due to chance alone; If not circled any answer for (ii) must refer to 7.82 in (iii) ECF from chi squared table	1
(c)		\{Common phenotypes/red grey and scarlet ebony\} are due to linkage/ description of linkage; \{Rare phenotypes/ red ebony and scarlet grey\} due to \{crossing over/ recombinants\};	2

Marks Available

5 (a) Restriction \{endonuclease/ enzymes\} used to cut (out the desired gene);
The same \{endonuclease/ enzyme\} is used to open the plasmids;
Producing \{complementary/ corresponding\} 'sticky ends’; Ligase is used to \{join/ splice/ attach/ adhere/ anneal\} gene into plasmid;
(b) Placed in sterile, (aerated) \{medium/agar\}; NOT soil (Allow) cells to form \{callus/ mass of \{undifferentiated/ totipotent cells\}\};
Callus is subdivided;
Apply hormones to callus to differentiate into plantlets/
Plantlets \{transplanted/put\} into sterile soil;
(c) (i) 'Roundup' will not kill crop but it will kill \{other plants / weeds\};

Reducing competition in the field;
Allowing increased yield;
(ii) There will be increased use of herbicide;
a reduction in biodiversity/ may lead to \{herbicide resistant weeds/ superweeds\} bioaccumulation in food chain;

OR
Dispersal of pollen from crops engineered for herbicide resistance to \{wild relatives/ weeds\}; may lead to \{herbicide resistant weeds/ superweeds\};
OR
Dispersal of pollen from crops engineered for herbicide resistance to other crops;
May contaminate organic crops;
OR
(GM crop) produces a new protein;
Unknown effects of eating new protein;
Question 5 Total

Question

6 (a) (i) CGC is replaced by TGC/ C is replaced by T;
Amino acid cys has replaced arg;
(ii) Change in \{protein/ tertiary\} structure/ different protein is made;
MC1R will not be stimulated (by the hormone);
\{Less/no\} eumelanin will be produced;
(b) (i) Mice with light fur found in an environment providing \{lightbackgrounds/sandy beaches\} AND mice with dark fur in \{forest/dark backgrounds\}/

Dark fur is found in the darker background/
light fur is found in the lighter background;
For camouflage/ OWTTE;
(ii) Small populations (of mice);
(iii) Mice with light fur \{are less easily seen/caught by predators/ correct reference to camouflage/ have a selective advantage\}; Light fur mice (survive to) reproduce and pass \{allele C/ advantageous allele/ light fur allele\} to next generation; Increasing the frequency of the allele; 95% of population (have allele C);
(iv) \{Genetic/behavioural/geographic/allopatric/reproductive/

1 sympatric/ seasonal/ temporal\} isolation;

Primary: environment not previously colonised/ from bare rock;
Secondary: environment has soil/previous inhabited;
(b) (i) Acid/acidic; NOT low
(ii)

feature	Betula	Ulex
pH	(from 3.56 to 4.24,	
difference of 0.68)	(from 3.56 to 3.55	
difference of 0.01)		
	Increases $\mathrm{pH} /$ makes more alkali/ makes less acidic/	Not much/ no change/ no effect/ slight decrease;
Phosphorus	(from 3.88 to 4.7 difference of 0.82) Increases a lot	(from 3.88 to 4.16 difference of 0.28) Small increase;
Nitrate	(from 0.68 to 0.84 difference of 0.14)	(from 0.68 to 2.37 difference of 1.69) Very large
	Increases	increase;

1 mark for valid COMPARISON of each feature
(c) (i) Ulex europaeus;
(ii) The \{invading /dominant/ new/ named species\} \{change the soil chemistry/ named change\};
Giving them a competitive advantage/ competition for named resource/ existing species are at a disadvantage/ so are better suited to the environment;
(d) (i) Climax community;
(ii) Increases;
(iii) \{C. vulgaris /E. cinerea/E. tetralix\} are disappearing from plus B and plus PS ;
These are surviving in plus U ;
Names must be included to access any marking points
Question 7 Total

Question

Marks Available

8 (a) A* Sepal/calyx -tough leaf-like- to protect more delicate parts \{in bud/ when immature\}/ can be coloured to attract insects/ green for photosynthesis;

B* Petals/corolla - large/brightly coloured/scented - to attract insects ;

C $\{$ Nectaries/nectar/sugar\} to attract insects;
D* Filament - thin/stalk-like/short/hooked - to hold anthers where they will come in contact with insect/ contains vascular tissue to provide anther with nutrients;

E Anther-- to \{produce/ contain\} \{haploid gametes/male gametes/pollen /microspore\};
F^{*} Anther - is hollow/ has a line of weakness- description of splitting and rolling to put pollen on outside/ correct reference to dehiscence/ getting pollen onto insect;

G* Pollen (grain) - sculptured exine/ has hooks - to attach to insects body;
H^{*} Stigma - $\{$ is sticky - to catch/trap pollen (grains) $\} /\{$ - secretes chemicals/sugar\} - to stimulate pollen tube growth\};

I Style to hold stigma where it will come in contact with insects/ pollen tube \{gains nutrients from the style/ digests its path though the style\};

J Correct reference to relative positions of anthers and stigmas to \{prevent self /encourage cross\} pollination;

K* Ovary - \{walls - to \{protect/contain\} developing ovule/embryo sac\}/ \{ -secretes chemicals - pollen tube growth\};

L* Ovule- integuments - to protect developing embryo;
M (Ovule) - tiny hole/micropyle - to allow entry of pollen tube;
N Good drawing correctly labelled with at least 4 of above;
O Appropriate means of ensuring cross pollination, e.g. dimorphism (single sex plants)/ protogyny (ovules mature first)/ protandry (pollen matures first)/genetic incompatibility/ chemical inhibition on the stigma;

To award * there must be a name, a description and a function

Question

8 (b) A Sun is source of energy/ energy enters as light energy;
B Photosynthesis converts light energy to chemical energy (in organic molecules);

C \{Not all light/ only some light\} striking plants is used for photosynthesis;

D Some \{is reflected/ passes between \{cells/chloroplasts\}/ wrong wavelength/ is transmitted/ passes through\};

E Correct definition of GPP/ total (bio)mass of (organic) produce/ rate at which products are formed/ $\mathrm{kJm}^{-2} \mathrm{yr}^{-1}$;

F Correct definition for NPP/ Mass available to primary consumers;

Accept correct equation to credit E and F (GPP- Respiration=NPP)

G \{Biomass/plant matter/ chemical energy\} is transferred from producer to \{herbivores/primary consumers\} when it is eaten;

H Not all plant is \{eaten e.g. roots/ digested e.g. cellulose\};
I (Respiration) energy is lost as heat energy/ used for \{movement/ metabolism/ active transport\};

J \{Biomass/ chemical energy\} is passed to \{carnivores/secondary consumers\};

K Energy in \{faeces /urine/ dead bodies\} is passed to decomposers; NOT excretion

L Carnivores are more efficient + protein is more easily digestible/ herbivores are less efficient + cellulose is less easily digestible;

Keeping animals in heated sheds with little room to move about

M Less heat energy will be lost \{if the difference between body temperature and shed temperature is small/ maintaining body temperature\};

N Less energy will be lost in movement if the animals are prevented from moving;

O More of the energy is used for making meat / eggs / milk / increasing \{biomass/ size\}yield;

